Permutations with Up-Down Signatures of Nonnegative Partial Sums

Allen Wang ${ }^{1}$
Mentor: Guangyi Yue ${ }^{2}$

${ }^{1}$ Acton-Boxborough Regional High School
${ }^{2}$ MIT Math Department

May 19-20, 2018
MIT PRIMES Conference

A Simpler Problem

Definition

Define a path p of length n as a sequence of points $p_{0}, p_{1}, \ldots, p_{n}$ in the plane such that $p_{0}=(0,0)$ and $p_{i}-p_{i-1}=(1,1)$ or $(1,-1)$ for all positive integers $i \leq n$.

Figure: A path of length 8

Nonnegative Paths

Definition

If each point p_{i} has nonnegative coordinates, then p is a nonnegative path.

Figure: A nonnegative path of length 8

Nonnegative Paths

Definition

If each point p_{i} has nonnegative coordinates, then p is a nonnegative path.

Figure: A nonnegative path of length 8

There are $\binom{n}{\lfloor n / 2\rfloor}$ nonnegative paths of length n.

Dyck Paths

Definition

A nonnegative path that ends on the x-axis is a Dyck path.

Figure: A Dyck path of length 8

Dyck Paths

Definition

A nonnegative path that ends on the x-axis is a Dyck path.

Figure: A Dyck path of length 8

There are $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ Dyck paths of length $2 n$ (Chung and Feller, 1949).

Generalization to Permutations

```
Notation
Let \(\mathfrak{S}_{n}\) denote the set of permutations of the numbers \(1,2, \ldots, n\). And for a permutation \(w \in \mathfrak{S}_{n}\), let \(w_{1}, w_{2}, \ldots, w_{n}\) be the entries in the permutation.
```


Generalization to Permutations

```
Notation
Let \(\mathfrak{S}_{n}\) denote the set of permutations of the numbers \(1,2, \ldots, n\). And for a permutation \(w \in \mathfrak{S}_{n}\), let \(w_{1}, w_{2}, \ldots, w_{n}\) be the entries in the permutation.
```

- Each permutations $w \in \mathfrak{S}_{n}$ can be associated with an up-down signature.

Generalization to Permutations

Notation

Let \mathfrak{S}_{n} denote the set of permutations of the numbers $1,2, \ldots, n$. And for a permutation $w \in \mathfrak{S}_{n}$, let $w_{1}, w_{2}, \ldots, w_{n}$ be the entries in the permutation.

- Each permutations $w \in \mathfrak{S}_{n}$ can be associated with an up-down signature.
- The up-down signature is an ($n-1$)-tuple $s(w)=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right)$ where $\sigma_{i}=\operatorname{sgn}\left(w_{i+1}-w_{i}\right)$.

Generalization to Permutations

Notation

Let \mathfrak{S}_{n} denote the set of permutations of the numbers $1,2, \ldots, n$. And for a permutation $w \in \mathfrak{S}_{n}$, let $w_{1}, w_{2}, \ldots, w_{n}$ be the entries in the permutation.

- Each permutations $w \in \mathfrak{S}_{n}$ can be associated with an up-down signature.
- The up-down signature is an ($n-1$)-tuple $s(w)=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right)$ where $\sigma_{i}=\operatorname{sgn}\left(w_{i+1}-w_{i}\right)$.
- So σ_{i} takes on +1 (resp. -1) if there is an ascent (resp. descent) from index i to $i+1$ in w.

Generalization to Permutations

Notation

Let \mathfrak{S}_{n} denote the set of permutations of the numbers $1,2, \ldots, n$. And for a permutation $w \in \mathfrak{S}_{n}$, let $w_{1}, w_{2}, \ldots, w_{n}$ be the entries in the permutation.

- Each permutations $w \in \mathfrak{S}_{n}$ can be associated with an up-down signature.
- The up-down signature is an ($n-1$)-tuple $s(w)=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right)$ where $\sigma_{i}=\operatorname{sgn}\left(w_{i+1}-w_{i}\right)$.
- So σ_{i} takes on +1 (resp. -1) if there is an ascent (resp. descent) from index i to $i+1$ in w.

Using $s(w)$, each permutation of \mathfrak{S}_{n} maps to a path p_{w} of length $n-1$.

Example

Figure: p_{w} for $w=215689734 ; s(w)=(-1,+1,+1,+1,+1,-1,-1,+1)$

Two Classes of Permutations

Definition

A nonnegative permutation w is one in which all the partial sums of $s(w)$ are nonnegative, i.e. p_{w} is a nonnegative path.

Two Classes of Permutations

Definition

A nonnegative permutation w is one in which all the partial sums of $s(w)$ are nonnegative, i.e. p_{w} is a nonnegative path.

- For example, 1234, 2341, 15243, and 56128734 are all nonnegative permutations

Two Classes of Permutations

Definition

A nonnegative permutation w is one in which all the partial sums of $s(w)$ are nonnegative, i.e. p_{w} is a nonnegative path.

- For example, 1234, 2341, 15243, and 56128734 are all nonnegative permutations

Definition
A Dyck permutation w is one whose path p_{w} is Dyck.

Two Classes of Permutations

Definition

A nonnegative permutation w is one in which all the partial sums of $s(w)$ are nonnegative, i.e. p_{w} is a nonnegative path.

- For example, 1234, 2341, 15243, and 56128734 are all nonnegative permutations

Definition
A Dyck permutation w is one whose path p_{w} is Dyck.

- For example, 15243, 135798642, and 34251 are all Dyck permutations.

Enumeration of Nonnegative Permutations

- The number of Dyck permutations of length $2 n+1$ has been counted using an analog of the Chung-Feller theorem.

Enumeration of Nonnegative Permutations

- The number of Dyck permutations of length $2 n+1$ has been counted using an analog of the Chung-Feller theorem.
- The count is $\frac{1}{n+1} A(2 n+1, n)$, where $A(2 n+1, n)$ is the number of permutations in $\mathfrak{S}_{2 n+1}$ with n descents (Bidkhori and Sullivant, 2011).

Enumeration of Nonnegative Permutations

- The number of Dyck permutations of length $2 n+1$ has been counted using an analog of the Chung-Feller theorem.
- The count is $\frac{1}{n+1} A(2 n+1, n)$, where $A(2 n+1, n)$ is the number of permutations in $\mathfrak{S}_{2 n+1}$ with n descents (Bidkhori and Sullivant, 2011).

$2 n+1$	1	3	5	7	9
$A(2 n+1, n)$	1	4	66	2416	156190
$\frac{1}{n+1} \cdot A(2 n+1, n)$	1	2	22	604	15619

Enumeration of Nonnegative Permutations

- The number of Dyck permutations of length $2 n+1$ has been counted using an analog of the Chung-Feller theorem.
- The count is $\frac{1}{n+1} A(2 n+1, n)$, where $A(2 n+1, n)$ is the number of permutations in $\mathfrak{S}_{2 n+1}$ with n descents (Bidkhori and Sullivant, 2011).

$2 n+1$	1	3	5	7	9
$A(2 n+1, n)$	1	4	66	2416	156190
$\frac{1}{n+1} \cdot A(2 n+1, n)$	1	2	22	604	15619

- Recall the number of Dyck paths of length $2 n$ is $\frac{1}{n+1}\binom{2 n}{n}$, and $\binom{2 n}{n}$ is the number of paths of length $2 n$ with n down-steps.

Enumeration of Nonnegative Permutations

- The number of Dyck permutations of length $2 n+1$ has been counted using an analog of the Chung-Feller theorem.
- The count is $\frac{1}{n+1} A(2 n+1, n)$, where $A(2 n+1, n)$ is the number of permutations in $\mathfrak{S}_{2 n+1}$ with n descents (Bidkhori and Sullivant, 2011).

$2 n+1$	1	3	5	7	9
$A(2 n+1, n)$	1	4	66	2416	156190
$\frac{1}{n+1} \cdot A(2 n+1, n)$	1	2	22	604	15619

- Recall the number of Dyck paths of length $2 n$ is $\frac{1}{n+1}\binom{2 n}{n}$, and $\binom{2 n}{n}$ is the number of paths of length $2 n$ with n down-steps.
- Our main goal is counting the number of nonnegative permutations

Conjecture and Examples

Conjecture (Callan, 2006)
The number of nonnegative permutations of \mathfrak{S}_{n} is $(n-1)!!^{2}$ if n is even, and $n!!(n-2)!!$ if n is odd.

Conjecture and Examples

Conjecture (Callan, 2006)
The number of nonnegative permutations of \mathfrak{S}_{n} is $(n-1)!!^{2}$ if n is even, and $n!!(n-2)!!$ if n is odd.

The numbers $(n-1)!^{2}$ if n is even and $n!!(n-2)!!$ if n is odd appear in A000246 of the OEIS.

- The number of permutations of \mathfrak{S}_{n} with odd order.
- The number of permutations of \mathfrak{S}_{n} whose left-to-right minima occur in odd locations.

Conjecture and Examples

Conjecture (Callan, 2006)
The number of nonnegative permutations of \mathfrak{S}_{n} is $(n-1)!!^{2}$ if n is even, and $n!!(n-2)!!$ if n is odd.

The numbers $(n-1)!!^{2}$ if n is even and $n!!(n-2)!!$ if n is odd appear in A000246 of the OEIS.

- The number of permutations of \mathfrak{S}_{n} with odd order.
- The number of permutations of \mathfrak{S}_{n} whose left-to-right minima occur in odd locations.

When $n=3$, there are exactly $3!!1!!=3$ nonnegative permutations: 132, 123, 231.

Conjecture and Examples

Conjecture (Callan, 2006)
The number of nonnegative permutations of \mathfrak{S}_{n} is $(n-1)!!^{2}$ if n is even, and $n!!(n-2)!!$ if n is odd.

The numbers $(n-1)!!^{2}$ if n is even and $n!!(n-2)!!$ if n is odd appear in A000246 of the OEIS.

- The number of permutations of \mathfrak{S}_{n} with odd order.
- The number of permutations of \mathfrak{S}_{n} whose left-to-right minima occur in odd locations.

When $n=3$, there are exactly $3!!1!!=3$ nonnegative permutations: 132, 123, 231.

When $n=4$, there are exactly $3!!^{2}=9$ nonnegative permutations: $1234,1243,1324,1342,1423,2314,2341,2413,3412$.

Two Remarks

Let F_{n} be the set of nonnegative permutations of length n, and let $f(n)=\left|F_{n}\right|$. Then the conjecture is equivalent to either of the following two statements:

Two Remarks

Let F_{n} be the set of nonnegative permutations of length n, and let $f(n)=\left|F_{n}\right|$. Then the conjecture is equivalent to either of the following two statements:
(1) The probability that a randomly selected permutation of \mathfrak{S}_{n+1} is nonnegative is equal to the probability that a randomly selected path of length n is nonnegative.

$$
\frac{\binom{n}{\lfloor n / 2\rfloor}}{2^{n}}=\frac{f(n+1)}{(n+1)!}
$$

Two Remarks

Let F_{n} be the set of nonnegative permutations of length n, and let $f(n)=\left|F_{n}\right|$. Then the conjecture is equivalent to either of the following two statements:
(1) The probability that a randomly selected permutation of \mathfrak{S}_{n+1} is nonnegative is equal to the probability that a randomly selected path of length n is nonnegative.

$$
\frac{\binom{n}{\lfloor n / 2\rfloor}}{2^{n}}=\frac{f(n+1)}{(n+1)!}
$$

(2) $f(1)=1, f(2 n)=(2 n-1) f(2 n-1)$, and $f(2 n+1)=(2 n+1) f(2 n)$.

Easy Cases

$f(1)=1$; there is only one permutation in \mathfrak{S}_{1}, and it is nonnegative.

Easy Cases

$f(1)=1$; there is only one permutation in \mathfrak{S}_{1}, and it is nonnegative.
Lemma
$f(2 n+1)=(2 n+1) f(2 n)$.

Easy Cases

$f(1)=1$; there is only one permutation in \mathfrak{S}_{1}, and it is nonnegative.
Lemma
$f(2 n+1)=(2 n+1) f(2 n)$.

- We create a map from $F_{2 n} \times\{1,2, \ldots, 2 n+1\}$ to $F_{2 n+1}$.

Easy Cases

$f(1)=1$; there is only one permutation in \mathfrak{S}_{1}, and it is nonnegative.
Lemma
$f(2 n+1)=(2 n+1) f(2 n)$.

- We create a map from $F_{2 n} \times\{1,2, \ldots, 2 n+1\}$ to $F_{2 n+1}$.
- For a $w \in F_{2 n}$ add any number a from $\{1,2, \ldots, 2 n+1\}$ to w, and increment all numbers in w that are $\geq a$.

Easy Cases

$f(1)=1$; there is only one permutation in \mathfrak{S}_{1}, and it is nonnegative.
Lemma
$f(2 n+1)=(2 n+1) f(2 n)$.

- We create a map from $F_{2 n} \times\{1,2, \ldots, 2 n+1\}$ to $F_{2 n+1}$.
- For a $w \in F_{2 n}$ add any number a from $\{1,2, \ldots, 2 n+1\}$ to w, and increment all numbers in w that are $\geq a$.
- For example, if $w=1234$ and $a=3$, then we obtain

$$
(1234,3) \mapsto 12453
$$

Example from $F_{2 n}$ to $F_{2 n+1}$

Figure: $(34126785,4) \mapsto 351278964$

Example from $F_{2 n}$ to $F_{2 n+1}$

Figure: $(34126785,4) \mapsto 351278964$

Example from $F_{2 n}$ to $F_{2 n+1}$

Figure: $(34126785,4) \mapsto 351278964$

Note that before adding the 4 , the path ended at $y=2 c+1$.

Example that Fails from $F_{2 n-1}$ to $F_{2 n}$

Figure: $(4572163,3) \mapsto 56821743$

Example that Fails from $F_{2 n-1}$ to $F_{2 n}$

Figure: $(4572163,3) \mapsto 56821743$

Current Progress on the Hard Case

- Using the same approach we show that

$$
(2 n) f(2 n-1)-\text { \#bad permutations }=f(2 n)
$$

Current Progress on the Hard Case

- Using the same approach we show that

$$
(2 n) f(2 n-1)-\text { \#bad permutations }=f(2 n)
$$

- These "bad permutations" of length $2 n$ begin with a permutation that is Dyck followed by a descent.

Current Progress on the Hard Case

- Using the same approach we show that

$$
(2 n) f(2 n-1)-\# \text { bad permutations }=f(2 n)
$$

- These "bad permutations" of length $2 n$ begin with a permutation that is Dyck followed by a descent.
- If $D_{n, k}$ is the set of Dyck permutations of \mathfrak{S}_{n} that end in k, then

$$
\text { \#bad permutations of length } 2 n=\sum_{k} k\left|D_{2 n-1, k}\right| \text {. }
$$

We would like to show that this equals $f(2 n-1)$.

Possible Approaches

- Use reflections or cyclic permutations to create a "one to k" map from $D_{2 n-1, k}$ to $F_{2 n-1}$.

Possible Approaches

- Use reflections or cyclic permutations to create a "one to k" map from $D_{2 n-1, k}$ to $F_{2 n-1}$.
- Consider maps for Dyck paths and try to find their analogs for permutations.

Possible Approaches

- Use reflections or cyclic permutations to create a "one to k" map from $D_{2 n-1, k}$ to $F_{2 n-1}$.
- Consider maps for Dyck paths and try to find their analogs for permutations.
- Interpret $\sum_{k} k\left|D_{2 n-1, k}\right|$ as an expectation and use results derived from Szpiro and Shevelev.

Possible Approaches

- Use reflections or cyclic permutations to create a "one to k" map from $D_{2 n-1, k}$ to $F_{2 n-1}$.
- Consider maps for Dyck paths and try to find their analogs for permutations.
- Interpret $\sum_{k} k\left|D_{2 n-1, k}\right|$ as an expectation and use results derived from Szpiro and Shevelev.
- Consider the problem in a physics context: the numbers $f(n)$ appear in the analysis of spin-glass models and the Ising model.

Acknowledgements

I would like to thank:

Acknowledgements

I would like to thank:

- My mentor Guangyi Yue

Acknowledgements

I would like to thank:

- My mentor Guangyi Yue
- Prof. Richard Stanley for proposing the project

Acknowledgements

I would like to thank:

- My mentor Guangyi Yue
- Prof. Richard Stanley for proposing the project
- Dr. Gerovitch, Dr. Tanya Khovanova, and the MIT PRIMES program

Acknowledgements

I would like to thank:

- My mentor Guangyi Yue
- Prof. Richard Stanley for proposing the project
- Dr. Gerovitch, Dr. Tanya Khovanova, and the MIT PRIMES program
- My parents

References

R R. P. Stanley. Enumerative Combinatorics Volume 1. Combridge University Press, 2012.
围 I. Niven. A combinatorial problem of finite sequences. Nieuw Arch. Wisk 16 (1968). 116-123.

圊 V. Shevelev. The Number of Permutations With Prescribed Up-Down Structure as a Function of Two Variables. Integers 12 (2012).
K. K. Chung, W. Feller. On fluctuations in coin-tossing. Proc. Nat. Acad. Sci. U. S. A. f 35, (1949). 605608.
H. Bidkhori, Seth Sullivant. Eulerian-Catalan Numbers. The Electronic Journal of Combinatorics 18 (2011), P187.

